当前位置:首页 > 专题范文 > 公文范文 > 正文

高二物理课教学设计案例7篇(精选文档)

发布时间: 2023-08-01 13:10:04 来源:网友投稿

高二物理课教学设计案例一、教材分析本节课是人教版选修3-5第十六章第二节内容,本节的内容为“动量和动量定理”,本节分两课时来完成,这节课为第一课时。也是本章下面是小编为大家整理的高二物理课教学设计案例7篇,供大家参考。

高二物理课教学设计案例7篇

高二物理课教学设计案例篇1

一、教材分析

本节课是人教版选修3-5第十六章第二节内容,本节的内容为“动量和动量定理”,本节分两课时来完成,这节课为第一课时。也是本章的重点内容,是第一节“实验:探究碰撞中的守恒量”的继续,同时又为第三节“动量守恒定律”奠定了基础,所以“动量定理”有承前启后的作用。“动量定理”是牛顿第二定律的进一步展开。它侧重于力在时间上的累积效果,为解决力学问题开辟了新途径,尤其是打击和碰撞类的问题。动量定理的知识与人们的日常生活,生产技术和科学研究有着密切的关系,因此学习这部分知识有着广泛的现实意义。

二、学情分析

学生已经掌握了动量概念,会运用牛顿第二定律和运动学公式等,为本节课的学习打下了坚实的基础。高中生思维方式逐步由形象思维向抽象思维过渡,因此在教学中需要以一些感性认识为依托,加强直观性和形象性,以便学生理解,因此在教学中多让学生参与利用动量定理解释生活中的有关现象,加强学生思维由形象到抽象的过渡。

三、教学目标

知识与技能:

1、理解动量的变化和冲量的定义;

2、理解动量定理的含义和表达式,理解其矢量性;

3、会用动量定理解释有关物理现象,并能掌握动量定理的简单计算

过程与方法:

通过运用牛顿运动定律和运动学公式推导出动量定理表达式,培养学生逻辑运算能力。

情感态度与价值观:

通过运用所学知识推导新的规律,培养学生学习的兴趣,激发学生探索新知识的_。

2、通过用动量定理解释有关物理现象,培养学生用所学物理知识应用于生活实践中去,体现物理学在生活中的指导作用。

四、教学重难点

教学重点:理解动量的变化、冲量、动量定理的表达式和矢量性

教学难点:用动量定理解释有关物理现象,针对动量定理进行简单的计算

第二问:我打算让学生怎样获得?

五、教学策略

依据建构主义学习理论,学生学习过程是在教师创设的情境下,借助已有的知识和经验,主动探索,积极交流,从而建立新的认知结构的过程。学习是学生主体进行意义建构的过程。因此要创设建构知识的学习环境,树立以人为本的教育观念,发展不断建构的认知过程。我校开展的“四五四”绿色生命教育课堂教学模式,就是以学生为中心,突出学生在学习过程中的主体地位,通过自主学习、多元互动提升学生的学习能力。

1、本节从“鸟撞飞机”的情景引入,可以激发学生学习的兴趣,在课程学习中通过练习题计算出鸟撞击飞机的力,两者相呼应。这种情景导入的目的在于引起学生的有意注意,激发学生的兴趣和求知_。

2、在课堂上通过学生的互相讨论,把学生的思维充分地调动起来,让他们主动参与学习,成为学习的主人。从而使复杂性的内容演变成简单易懂的内容。并加以多媒体课件,限度地发挥学生的主动性和创造性,提高他们的思维能力和观察能力,同时教师的适当总结,使他们对知识有了更深更全面的认识。

3、在反馈拓展环节,针对鸟撞飞机事件进行相关计算,同时拓展到更高空间即太空垃圾问题,结合科技前沿对学生进行情感教育,开阔学生视野。

第三问:我打算多长时间让学生获得?

5分钟创设情境并复习引入新课,10分钟学生自主探究,25分钟与学生互动交流,5分钟总结分享布置作业。

第四问:我怎么知道教学达到了我的要求,有多少学生达到我的要求?

通过小组合作,生生、师生、生本互动,了解学生的掌握、落实情况;通过问题讨论,了解学生对知识的运用。

【五个环节】

六、教学过程

教学环节

教师活动

学生活动

设计意图

创设情境

复习

引入

关于鸟撞飞机的报道,播放鸟撞飞机的视频

观察、体会、思考

通过多媒体辅助视频,激发学生兴趣,设疑,为动量定理的简单计算做铺垫

复习提问:

1、动量的定义

2、动量的方向

3、动量是过程量还是状态量

引导学生练习学案中的例1

对学生反馈加以评价,提出规范性的要求

回答问题:

1.P=mv

2、与速度方向相同

3、状态量

做练习,并展示

回顾旧知识动量,通过练习引出新内容动量的变化;通过学生展示分析提高学生语言表达能力,突破动量变化矢量性的重点。

多元互动

理论探究深入新知

教师提出问题:动量的变化产生的原因是什么?

针对学生展示进行评价

学生动笔推导并在投影展示推导过程

通过理论推导培养学生逻辑推理能力,加强对动量定理的理解,从而突破本节课重点。培养了学生的语言表达能力,加强了生生交流、师生交流。

联系学生推导过程,引出冲量定义、矢量性及单位

动量定理的内容和表达式

思考、回答老师提问

通过老师结合学生推导过程给出新概念新内容,连接顺畅,学生易于接受,从而达到教学目标。

当堂训练强化认知

展示网球运动员李娜获澳网冠军图片,并创设情境让学生做学案上例2,教师进行规范性指导

重现鸟撞飞机情境,进行练习2

深化拓展:宇宙垃圾问题

高二物理课教学设计案例篇2

1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止。

(1)运动是物体的一种属性,物体的运动不需要力来维持。

(2)定律说明了任何物体都有惯性。

(3)不受力的物体是不存在的。牛顿第一定律不能用实验直接验证。但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。

(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。

2、惯性:物体保持匀速直线运动状态或静止状态的性质。

(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关。因此说,人们只能“利用”惯性而不能“克服”惯性。

(2)质量是物体惯性大小的量度。

3、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F 合 =ma

(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。

(2)对牛顿第二定律的数学表达式F 合 =ma,F 合 是力,ma是力的作用效果,特别要注意不能把ma看作是力。

(3)牛顿第二定律揭示的是力的瞬间效果。即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度。

(4)牛顿第二定律F 合 =ma,F合是矢量,ma也是矢量,且ma与F 合 的方向总是一致的。F合 可以进行合成与分解,ma也可以进行合成与分解。

4、 牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。

(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失。

(2)作用力和反作用力总是同种性质的力。

(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加。

5、牛顿运动定律的适用范围:宏观低速的物体和在惯性系中。

6、超重和失重

(1)超重:物体有向上的加速度称物体处于超重。处于超重的物体对支持面的压力F N (或对悬挂物的拉力)大于物体的重力mg,即F N =mg+ma.

(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当a=g时F N =0,物体处于完全失重。

(3)对超重和失重的理解应当注意的问题

不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力。

超重或失重现象与物体的速度无关,只决定于加速度的方向。“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重。

在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等。

7、处理连接题问题----通常是用整体法求加速度,用隔离法求力。

高二物理课教学设计案例篇3

知识目标

1、掌握波长、频率、波速的物理意义;

2、能在机械波的图象中识别波长;

3、掌握波长、频率和波速之间的关系,并会应用这一关系进行计算和分析问题;

能力目标

培养学生阅读材料、识别图象、钻研问题的能力。

教学建议

本节的重点是理解波长的含义及公式的含义;要求对公式能灵活应用,学习中要理解波的传播速度的`特点,掌握波速、频率、波长各由什么因素决定,减少理解概念出错的机会。为了很好的理解波速、频率、波长各由什么因素决定,解释如下:

波的传播速度,其中__三个量相互关联;从公式上看,似乎任意一个量改变都会影响其他两个量;不少的初学者都会产生这样的认识,其实不然,那么都是受谁决定的呢?

(1)周期和频率:只取决于波源,而与__无关;

(2)波速决定于介质的物理性质,它与__无直接关系。

(3)波长,则决定于和,只要和其中一个发生变化,其值必然发生变化,而保持的关系。

波长、频率和波速的教学设计示例

教学重点:波长、频率和波速之间的关系

教学难点:波长、频率和波速之间的关系

教学方法:讨论法

教学用具:横波演示器、计算机多媒体

高二物理课教学设计案例篇4

教学目标

1、知识与技能

(1)了解地球表面物体的万有引力两个分力的大小关系,计算地球质量;

(2)行星绕恒星运动、卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量;

(3)了解万有引力定律在天文学上有重要应用。

2、过程与方法:

(1)培养学生根据数据分析找到事物的主要因素和次要因素的一般过程和方法;

(2)培养学生根据事件的之间相似性采取类比方法分析新问题的能力与方法;

(3)培养学生归纳总结建立模型的能力与方法。

3、情感态度与价值观:

(1)培养学生认真严禁的科学态度和大胆探究的心理品质;

(2)体会物理学规律的简洁性和普适性,领略物理学的优美。

教学重难点

教学重点

地球质量的计算、太阳等中心天体质量的计算。

教学难点

根据已有条件求中心天体的质量。

教学工具

多媒体、板书

教学过程

一、计算天体的质量

1、基本知识

(1)地球质量的计算

①依据:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力,即

②结论:

只要知道g、R的值,就可计算出地球的质量。

(2)太阳质量的计算

①依据:质量为m的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力,即

②结论:

只要知道卫星绕行星运动的周期T和半径r,就可以计算出行星的质量。

2、思考判断

(1)地球表面的物体,重力就是物体所受的万有引力。(×)

(2)绕行星匀速转动的卫星,万有引力提供向心力。(√)

(3)利用地球绕太阳转动,可求地球的质量。(×)

3、探究交流

若已知月球绕地球转动的周期T和半径r,由此可以求出地球的质量吗?能否求出月球的质量呢?

【提示】能求出地球的质量。利用

为中心天体的质量。做圆周运动的月球的质量m在等式中已消掉,所以根据月球的周期T、公转半径r,无法计算月球的质量。

二、发现未知天体

1、基本知识

(1)海王星的发现

英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道。1846年9月23日,德国的加勒在勒维耶预言的位置附近发现了这颗行星——海王星。

(2)其他天体的发现

近100年来,人们在海王星的轨道之外又发现了冥王星、阋神星等几个较大的天体。

2、思考判断

(1)海王星、冥王星的发现表明了万有引力理论在太阳系内的正确性。(√)

(2)科学家在观测双星系统时,同样可以用万有引力定律来分析。(√)

3、探究交流

航天员翟志刚走出“神舟七号”飞船进行舱外活动时,要分析其运动状态,牛顿定律还适用吗?

【提示】适用。牛顿将牛顿定律与万有引力定律综合,成功分析了天体运动问题。牛顿定律对物体在地面上的运动以及天体的运动都是适用的。

三、天体质量和密度的计算

【问题导思】

1、求天体质量的思路是什么?

2、有了天体的质量,求密度还需什么物理量?

3、求天体质量常有哪些方法?

1、求天体质量的思路

绕中心天体运动的其他天体或卫星做匀速圆周运动,做圆周运动的天体(或卫星)的向心力等于它与中心天体的万有引力,利用此关系建立方程求中心天体的质量。

2、计算天体的质量

下面以地球质量的计算为例,介绍几种计算天体质量的方法:

(1)若已知月球绕地球做匀速圆周运动的周期为T,半径为r,根据万有引力等于向心力,即

(2)若已知月球绕地球做匀速圆周运动的半径r和月球运行的线速度v,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得

(3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得

(4)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的引力,得

解得地球质量为

3、计算天体的密度

若天体的半径为R,则天体的密度ρ

误区警示

1、计算天体质量的方法不仅适用于地球,也适用于其他任何星体。注意方法的拓展应用。明确计算出的是中心天体的质量。

2、要注意R、r的区分。R指中心天体的半径,r指行星或卫星的轨道半径。以地球为例,若绕近地轨道运行,则有R=r.

例:要计算地球的质量,除已知的一些常数外还需知道某些数据,现给出下列各组数据,可以计算出地球质量的有哪些?()

A.已知地球半径R

B.已知卫星绕地球做匀速圆周运动的轨道半径r和线速度v

C.已知卫星绕地球做匀速圆周运动的线速度v和周期T

D.已知地球公转的周期T′及运转半径r′

【答案】ABC

归纳总结:求解天体质量的技巧

天体的质量计算是依据物体绕中心天体做匀速圆周运动,万有引力充当向心力,列出有关方程求解的,因此解题时首先应明确其轨道半径,再根据其他已知条件列出相应的方程。

四、分析天体运动问题的思路

【问题导思】

1、常用来描述天体运动的物理量有哪些?

2、分析天体运动的主要思路是什么?

3、描述天体的运动问题,有哪些主要的公式?

1、解决天体运动问题的基本思路

一般行星或卫星的运动可看做匀速圆周运动,所需要的向心力都由中心天体对它的万有引力提供,所以研究天体时可建立基本关系式:

2、四个重要结论

设质量为m的天体绕另一质量为M的中心天体做半径为r的匀速圆周运动

以上结论可总结为“越远越慢,越远越小”。

误区警示

1、由以上分析可知,卫星的an、v、ω、T与行星或卫星的质量无关,仅由被环绕的天体的质量M和轨道半径r决定。

2、应用万有引力定律求解时还要注意挖掘题目中的隐含条件,如地球的公转周期是365天,自转一周是24小时,其表面的重力加速度约为9.8m/s2.

例:)据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“55Cancrie”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的480(1),母星的体积约为太阳的60倍。假设母星与太阳密度相同,“55Cancrie”与地球均做匀速圆周运动,则“55Cancrie”与地球的()

【答案】B

归纳总结:解决天体运动的关键点

解决该类问题要紧扣两点:一是紧扣一个物理模型:就是将天体(或卫星)的运动看成是匀速圆周运动;二是紧扣一个物体做圆周运动的动力学特征,即天体(或卫星)的向心力由万有引力提供。还要记住一个结论:在向心加速度、线速度、角速度和周期四个物理量中,只有周期的值随着轨道半径的变大而增大,其余的三个都随轨道半径的变大而减小

五、双星问题的分析方法

例:天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)

归纳总结:双星系统的特点

1、双星绕它们共同的圆心做匀速圆周运动,它们之间的距离保持不变;

2、两星之间的万有引力提供各自需要的向心力;

3、双星系统中每颗星的角速度相等;

4、两星的轨道半径之和等于两星间的距离。

高二物理课教学设计案例篇5

1、[感应电动势的大小计算公式]

1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动){L:有效长度(m)}

3)Em=nBSω(交流发电机的感应电动势){Em:感应电动势峰值}

4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

2、磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

3、感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

4、自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:

(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;

(2)自感电流总是阻碍引起自感电动势的电流的变化;

(3)单位换算:1H=103mH=106μH.

(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕

高二物理课教学设计案例篇6

1、分子动理论

(1)物质是由大量分子组成的分子直径的数量级一般是10-10m。

(2)分子永不停息地做无规则热运动。

①扩散现象:不同的物质互相接触时,可以彼此进入对方中去。温度越高,扩散越快。

②布朗运动:在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规则运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规则运动的宏观反映。颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

(3)分子间存在着相互作用力

分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力。

2、物体的内能

(1)分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。温度是物体分子热运动的平均动能的标志。

(2)分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。分子势能随着物体的体积变化而变化。分子间的作用表现为引力时,分子势能随着分子间的距离增大而增大。分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。

(3)物体的内能:物体里所有的分子的动能和势能的总和叫做物体的内能。任何物体都有内能,物体的内能跟物体的温度和体积有关。

(4)物体的内能和机械能有着本质的区别。物体具有内能的同时可以具有机械能,也可以不具有机械能。

3、改变内能的两种方式

(1)做功:其本质是其他形式的能和内能之间的相互转化。

(2)热传递:其本质是物体间内能的转移。

(3)做功和热传递在改变物体的内能上是等效的,但有本质的区别。

高二物理课教学设计案例篇7

电场力做正功,电势能减小,电场力做负功,电势能增大,正电荷在电场中受力方向与场强方向一致,所以正电荷沿场强方向,电势能减小,负电荷在电场中受力方向与场强相反,所以负电荷沿场强方向,电势能增大,但电势都是沿场强方向减小。

1、原因

电势能,电场力,功的关系与重力势能,重力,功的关系很相似。

E=mgh,重力做正功,重力势能减小。

电势能的原因就是电场力有做功的能力,凡是势能规律几乎都是如此,电场力正做功,电势能减小,电场力负做功,电势能增大,在做正功的过程中,电势能通过做功的形式把能量转化为其他形式的能,因而电势能减小。

静电力做的正功功=电势能的减小量,静电力做的负功=电势能的增加量

2、判断电场力做功的方法

(1)看电场力与带电粒子的位移方向夹角,小于90度为正功,大于90度为负功;

(2)看电场力与带电粒子的速度方向夹角,小于90度为正功,大于90度为负功;

(3)看电势能的变化,电势能增加,电场力做负功,电势能减小,电场力做正功。

最新文章

版权所有:博古范文网 2012-2024 未经授权禁止复制或建立镜像[博古范文网]所有资源完全免费共享

Powered by 博古范文网 © All Rights Reserved.。浙ICP备12018771号-1